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Abstract—Recently, the advanced condition monitoring 

methods such as the model-based method and the artificial 

intelligent method have been applied to maximize the 

availability as well as to minimize the maintenance cost of the 

aircraft gas turbines. Among them the non-linear GPA(Gas 

Path Analysis) method and the GA(Genetic Algorithms) have 

lots of advantages to diagnose the engines compared to other 

advanced condition monitoring methods such as the linear 

GPA, fuzzy logic and neural networks. Therefore this work 

applies the linear GPA, the non-linear GPA and the GA to 

diagnose AE3007 turbofan engine for an aircraft, and the GA 

method shows good diagnostic results on all the fault cases not 

only single and multiple fault cases but also consideration of 

sensor noise and biases. 

 

Index Terms—Engine condition monitoring, non linear GPA, 

genetic algorithms, 2-spool turbofan engine. 

 

I. INTRODUCTION 

The aviation gas turbine is composed of lots of expansive 

and highly precise parts and operated in high pressure and 

temperature gas. When its breakdown or performance 

deterioration due to the hostile environment and component 

degradation occur, it gives severe influences to the aircraft 

operation. Recently to minimize this problem the third 

generation of predictive maintenance known as condition 

based maintenance has been developed. This method 

monitors and diagnoses the engine condition and gives a 

proper maintenance action. Therefore it maximizes the 

availability and minimizes the maintenance cost [1]. The 

engine condition monitoring method is classified into the 

model based diagnosis such as observers, parity equations, 

parameter estimation and Gas Path Analysis (GPA) and the 

soft computing diagnosis such as expert system, fuzzy logic, 

neural networks and genetic algorithms.  

Among the model based diagnostic methods, the linear 

GPA method was firstly proposed by Urban in 1967 [2] and it 

has been widely used but it is severely limited to use in high 

level of faults. Therefore to improve this limitation the 

non-linear GPA method was developed by Esher [3]. This 

method can solve the non-linearity by the repetition 

technique.  

However, this method does not manage the sensor noise 

and bias problem. Based on the GPA method Rolls-Royce 

developed COMPASS diagnostic system in 1987 [4], Pratt & 
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Whitney developed SHERLOCK diagnostic system in 1991 

[5], and General Electric developed TEMPER diagnostic 

system in 1994 [6].  

Among the soft computing diagnostic methods, the 

intelligent diagnostic methods such as fuzzy logic, Neural 

Networks (NN) and GA have been developed to solve the 

problems of the model based diagnostic methods. Patel et al. 

studied on the diagnostics using SIMULINK model and NN 

in 1995 [7], Zhou studied on the diagnostics using fuzzy logic 

and NN in 1998 [8], and Tayler studied on the diagnostics 

using GA in 2000 [9]. However, Zedda pointed out that NN 

training is typically performed in cases where the 

input-output relationship is already known and it is very 

difficult to provide any level of confidence on the results 

obtained through the use of NNs [10].  

GA has some distinctive features compared with typical 

calculus-based optimization methods, i. e. no derivatives are 

needed so any-non-smooth function can be optimized, 

constraints can be dealt with penalty functions, global search 

is used to avoid getting stuck in a local minimum, and 

probabilistic rather than deterministic transition rules are 

used to create the next generation of strings from the current 

one [1].  

Therefore this work shows that the comparative study of 

the condition monitoring results for AE3007H turbofan 

engine of a conceptually designed HALE UAV(High 

Altitude Long Endurance Unmanned Aerial Vehicle) using 

the linear GPA, the non-linear GPA method and the GA 

method is performed, and it is found that the GA method is 

better than the  GPA methods specially in case of 

consideration of sensor noise and biases. 
 

II. PERFORMANCE MODELING OF AE3007H TURBOFAN 

ENGINE 

A. Operating Envelope  

The AE3007H turbofan engine is mounted on the 

conceptually designed HALE UAV that has the required 

mission performance such as both civil and military use, 

payload of 1000kg, maximum operating altitude of 65,000ft, 

cruising speed of Mach number 0.65, and endurance of 24 

hours shown at Table I [11]. 
 

TABLE I: HALE'S REQUIRED MISSION PERFORMANCE 

Payload 1000kg 

Mission altitude Above 50000ft 

Endurance 24hr 

Take-off weight 12203.5 kg 

Cruise speed M = 0.65 

Propulsion system Rolls Royce/Allison AE3007H 2 shaft turbofan 
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The HALE's mission profile is composed of basically 

take-off, climb, cruise, loiter, descent and landing [11]. 

B.  Engine Performance Modeling 

The performance modeling engine is AE3007H 2 shaft 

mixed flow type high bypass turbofan engine manufactured 

by Rolls-Royce/Allison, and it is composed of 1 stage axial 

fan with bypass ratio of 5, 14 stage axial high pressure 

compressor with pressure ratio of 23, 2 stage axial high 

pressure turbine and 3 stage axial low pressure turbine. The 

engine produces 36.9 kN at take-off condition. Figure 1 

shows the cut-down view of AE3007H turbofan engine [12]. 

 

 
 

 
Fig. 1. Rolls-Royce/Allison AE3007H turbofan engine. 

 

 
Fig. 2. Flow chart of performance model of AE3007H turbofan engine. 

 

The study engine model is the similar type engine as 

BR715-56 2-spool turbofan engine which has been 

previously studied by authors. Therefore the BR715-56 

turbofan engine's performance model [13] is slightly 

modified for the AE3007H turbofan engine's performance 

model with the newly generated component maps and some 

other engine characteristics.  

The developed performance model can make input data 

such as altitude, Mach number, standard atmosphere 

temperature change, and gas generator speed using constant 

blocks and output data such as net thrust, specific fuel 

consumption (SFC), and specific thrust. Fig. 2 shows the 

proposed performance model’s flow chart of AE3007H 

turbofan engine. The component maps are generated from 

similar known component maps using the scaling law 

because they are not provided by the engine manufacturer. 

The scaling is firstly performed based on the design point, i.e. 

the HALE UAV’s cruising condition, and then it is 

performed at other off-design conditions.  

C.  Performance Analysis Results 

Off-design performance analysis is carried out at the major 

mission profile such as take-off, climb, cruise, loiter, descent 

and landing. The rated power setting conditions are max 

take-off, max continuous, max climb and max cruise. 

1)Take-off performance 

The take-off performance analysis results are shown at 

Table II, and the comparison of the max take-off performance 

at sea level between the analysis result using the performance 

model and the manufacturer’s performance data is shown at 

Fig. 3. Here it is confirm that the take-off performance 

analysis result is well agreed with the manufacturer’s take-off 

performance data. 

 
TABLE II: TAKE-OFF PERFORMANCE 

Mach No. Thrust (kN) SFC (mg/Ns) 

0.00 36.84 10.88 

0.10 33.06 12.18 

0.15 31.41 12.83 

0.20 29.93 12.67 

0.25 28.60 14.26 

 

 
Fig. 3. Take-off performance. 

 

2) Climb Performance 

The climb is done between the end of take-off and the 

beginning of cruise of Mach number 0.65, and the climb 

performance is set at maximum excessive thrust. It is 

assumed that the aircraft weight is not changed during climb 

flight shown as Table III.  
 

TABLE III: CLIMB ALTITUDE 

Climb altitude Aircraft weight (kg) 

0 ~ 4,000m  12,200 

6,000 ~ 10,000m  12,100 

12,000 ~ 20,000m  12,000 
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TABLE IV: CLIMB PERFORMANCE 

Alt. (km) Time(min) Fn (kN) SFC (mg/Ns) Mn 

0.00 0 25.52 14.16 0.27 

2.24 4 22.02 12.44 0.30 

4.50 8 17.71 13.03 0.35 

6.99 12 13.78 13.64 0.42 

9.48 16 10.62 14.14 0.50 

11.67 20 7.97 14.62 0.59 

12.90 22.8 6.58 15.17 0.65 

 

Fig. 4 and Table IV show the calculated thrust and SFC at 

different altitudes during climb.  
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Fig. 4. Climb performance. 

 

3) Cruise performance 

The cruise performance analysis is performed from the 

beginning of cruise to optimal flight Mach number 0.65. The 

cruise performance analysis result is shown at Table 7. 

  
TABLE V: CRUISE PERFORMANCE 

Alt. (km) Tim (min) Fn(kN) SFC (mg/Ns) Mn 

13.76 8.4 2.93 17.77 0.65 

 

4) Loiter performance 

The loiter flight can be done at constant altitude and flight 

speed with minimum drag. The loiter performance analysis 

results are shown at Table 6.  

 
TABLE VI: LOITER PERFORMANCE 

 
Alt. (km) Time (min) Fn(kN) SFC (mg/Ns) Mn 

Start 15.24 0 2.51  16.21  0.55 

End 15.24 24 1.79 15.67 0.46 

 

5) Descent and landing performance 

The power settings at descent and landing are 10% and 5 % 

of max take-off condition. 

 

III. APPLIED DIAGNOSTIC METHODS 

A.  Non-linear GPA Method 

If any effect of measurement uncertainty is neglected, for a 

given engine operating point the basic equation for gas 

turbine performance can be expressed as follows:  

 = h ( )                                 (1) 

where, =RM is the measurement vector and M is the 

number of measurements, =RN is the component 

parameter vector and N is the number of component 

parameters, and h is a vector-valued function, usually 

non-linear.  

It is provided by the performance simulation model. 

(  ) = h -1                       (2) 

Equation (1) can be expanded in a Taylor series. For small, 

higher order terms of expansion can be neglected  

The deviation of engine component parameters can be 

calculated with a fault matrix (or diagnostic matrix) which is 

the inverse of the influence coefficient matrix H: 

                     (3) 

The inverse of the influence coefficient matrix is referred 

as "Fault Coefficient Matrix" (FCM) 

Linear Gas Path Analysis is clearly a very powerful tool 

for analyzing the health of gas turbines. However, it has the 

severe limitation that in many circumferences the level of 

error introduced by the assumption of the linear model can be 

of the same order of magnitude as the fault being analyzed. 

One way of improving the accuracy is to try to solve the 

non-linear relationship between dependent and independent 

parameters with an iterative method such as the 

Newton-Ralphson method. 

The relationship between engine measurement 

(dependent) parameter deviation vector and component 

(independent) parameter vector described by Equation (3) is 

re-written as follows for convenience: 

                             (4) 

The corrections are then added to the solution vector:  

                     (5) 

And the process is iterated to convergence. This iterative 

process has the advantage to overcome the problem that the 

changes in  have to be small. In other words, the process 

seeks to solve numerically the non-linear set of equation that 

is defined in Equation (1). 

Through each interval the change in the independent 

parameter becomes smaller and smaller and the process can 

be stopped when the change in the independent parameter has 

reached to a convergence criterion that suits your needs:  

                     (6) 

where M is the number of measurements, the actual 

measured deteriorated measured parameter vector and 

the calculated deteriorated measured parameter vector that is 

based on the detected component parameter vector , and 

is the convergence criteria.  

B. GA (Genetic Algorithms) Method 

GA is a stochastic algorithms whose search methods 

model some natural phenomena: genetic inheritance and 

Darwinian strife for survival. The idea behind genetic 

algorithms is to do what nature does. 

In the presence of measurement noise and bias, the 

following relationship for gas turbine component parameters 

and gas path measurement parameters would hold, as 
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described before: 

                     (7) 

where: h(.) is a vector valued function, is the measurement 

noise vector, is the measurement bias vector. 

Usually  is assumed to have a Gaussian probability 

density function (pdf) and moreover to have independent 

components. Therefore, the joint pdf is the product of the 

independent pdfs:  

                            (8) 

where  is the standard deviation of the j-th measurement. 

The idea of gas turbines fault diagnosis with genetic 

algorithm is shown in Fig. 5. With an initial guess of gas 

turbine component parameter vector , the engine model 

provides a predicted performance measurement vector . 

An optimization approach is applied to minimize an objective 

function. A minimization of the objective is carried out 

iteratively until the best predicted engine component 

parameter vector for real is obtained. 

The objective function is a measure of the difference 

between the real measurement vector and the predicted 

measurement vector . The basic requirements for the 

objective function are as follows: It should be a measure of 

the consistency between actual and predicted measurements, 

measurement noise should be accounted for, measurement 

biases should be accounted for, its minimization should 

reduce the "smearing" effect, and evaluation of the function 

should not be too burdensome from a computational point of 

view. 

 
Fig. 5. Non-linear model based diagnostic approach. 

 

A choice for the objective function would be, given a 

certain operating point: 

                          (9) 

where Zodj is the value of the j-th measurement in the 

off-design un-deteriorated condition.   

Minimization of the objective function provides the 

maximum likelihood solution for the non-linear problem. 

C. Sensor Fault Diagnostics 

Gas turbine sensor fault diagnostic is achieved with certain 

types of sensor redundancy.   

The approach described previously for gas turbine 

component fault diagnostics with genetic algorithms can be 

modified to deal with measurement biases or sensor fault 

detection. The idea is based on the following criterion: the 

presence of a bias will introduce inconsistency between 

actual and predicted measurements. 

The way of the optimization-based diagnostic system 

handles measurement biases relies on the concept of 

analytical redundancy. If no bias affects the measurement, 

then the minimization of object function expressed as 

Equation (9) can be performed 

The inconsistency due to a biases measurement would 

manifest itself with large values of the object function, since 

no  can be found to correspond to predicted measurements 

fitting sufficiently well the real ones. The problem can be 

overcome by elimination in the summation of objective 

function of the Mbias terms corresponding to the biased 

measurements. Then the remaining terms are mutually 

consistent and the optimized function  will reach a low 

value. For the technique to apply, it is necessary that:  
                   

M - Mbias > Nperf + P                      (10) 

where P is the number of environment and power setting 

parameters and Nperf is the number of component 

performance parameters. 
  

IV. CONDITION MONITORING ANALYSIS OF AE3007H 

TURBOFAN ENGINE 

In order to diagnose the gas turbine engine, the implanted 

faults are firstly classified, and then a set of the measuring 

parameters to detect effectively the implanted faults are 

selected. Depending on numbers and kinds of the measuring 

parameters, the precision of the diagnostic results is changed.  

To evaluate the precision of the detected faults the 

following RMS(Root Mean Square) error formula is used.  

 

        (11) 

where, n: number of independent parameters. 

To evaluate the condition monitoring analysis results by 

the linear GPA method, the non-linear GPA method and the 

GA method, use of known fault data is needed. There is the 

real faulted engine data or the simulating faulted engine data. 

The use of real faulted engine data is better, but it is difficult 

to obtain all kinds of real faulted engine data as well as the 

data without noise and bias. Therefore the simulating faulted 

engine data are generally used to verify the developing 

condition monitoring system. This work also uses the 

simulating faulted engine data.  

In the condition monitoring analysis the single faulted 

component cases and the multiple faulted component cases 

are considered with and without measuring noise and bias.  

The number of implanted independent parameters must be 

less than the number of measuring parameters, and the 

considered faults are the compressor fouling case and the 

turbine erosion case. The degradation quantities of implanted 

faults for the analysis are shown in Table VII. 
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TABLE VII: IMPLANTED FAULTS FOR COMPRESSOR FOULING AND TURBINE 

EROSION 

Compressor fouling Turbine Erosion 

Fan η -1.5 HPT η -3 

Fan Γ -2.0 HPT Γ +4 

HPC η -1.5 LPT η -3 

HPC Γ -2.0 LPT Γ +4 

 

Compressor fouling results in reduced flow capacity and 

efficiency due to reduction of flow area, and turbine erosion 

increases the nozzle area and decreases flow capacity and 

efficiency [14].  

The selected measuring parameters are inlet and outlet 

pressures and temperatures of high pressure compressor, high 

pressure turbine and low pressure turbines and fuel flow. 

Here the pressure measuring parameter is related to the 

non-dimensional flow parameter, and the combination of 

pressure and temperature measuring parameters is related to 

the efficiency. The more number of measuring parameters 

and the better precise diagnostic results are expected, but the 

measuring sensor error increase and the measuring cost 

increase. 

A. Diagnostic Analysis Results of Single Fault Cases 

without Sensor Noise and Biases 

Fig. 6 shows the diagnostic analysis results of single fault 

cases without sensor noise and biases. The analysis results 

using the linear GPA method have very low precision even 

though in case of low degradation, and the diagnostic RMS 

error of the high pressure compressor fouling case 

approaches to about 2. The analysis results using the 

non-linear GPA method have more precision in all the single 

fault cases. However the analysis results using the linear GA 

method have a bit lower precision in all the single fault cases.  

 

 
Fig. 6. Single component faults without noise or biases 

 

B. Diagnostic Analysis Results of Single Fault Cases with 

Sensor Noise and Biases 

Fig. 7 shows the diagnostic analysis results of single fault 

cases with sensor noise and biases to consider real operating 

condition.  

According to the analysis results with noise and biases, the 

GA method has the lowest RMS error among three methods. 

The linear GPA method has the RMS error of 9 at the fan 

fouling case, but the non-linear method has higher RMS 

errors than the linear GPA methods at other single fault cases. 

Moreover the GPA methods cannot detect the faults if the 

noise increases greatly.  

 

Fig. 7. Single Component Faults with noise and biases. 

C. Diagnostic Analysis Results of Multiple Fault Cases 

without Sensor Noise and Biases 

Fig. 8 shows the diagnostic analysis results of multiple 

fault cases without sensor noise and biases.  

According to the analysis results, the linear GPA method 

has very high RMS errors compared with the non-linear 

method and GA method, so it is found that the linear GPA 

method is very weak to use in the multiple fault cases. The 

non-linear GPA method has good results except for the fan 

and high pressure turbine multiple fault case.  

 

 
Fig. 8. Multiple Component Faults without Noise and Biases 

 

D. Diagnostic Analysis Results of Multiple Fault Cases 

with Sensor Noise and Biases 

Fig. 9 shows the diagnostic analysis results of multiple 

fault cases with sensor noise and biases.  

According to the analysis results with sensor noise and 

biases, the RMS errors of both the linear GPA method and the 

non-linear GPA method increase, while the GA method has 

very low RMS errors compared to GPA methods at all types 

of fault cases. It means that the GA method is a reliable 

acceptable diagnostic method for the condition monitoring of 

AE3007E turbo fan engine. 

 

 
Fig. 9. Multiple Component Faults with Noise and Biases 

218

International Journal of Materials, Mechanics and Manufacturing, Vol. 1, No. 2, May 2013



  

E. Diagnostic Analysis Results Depending on Changes of 

Ga's Major Parameter  

The influencing parameters to estimation results of the GA 

method are population size, number of generations, 

probability of mutation and probability of crossover. The 

followings show the analysis results depending on changes of 

Population and mutation effect.  

1) Population size effect on maximum fitness 

The GA method uses the population of possible strings 

rather than the use of an improved string through repetition 

process. To determine the optimal strings within the 

population, the analysis of changes of max fitness depending 

on different population size is performed, and its analysis 

results are shown at Fig. 10.  

 

 

Fig. 10. Population effect 

 

According to analysis results, it is found that if the 

population size increases, then the max fitness is improved 

but the conversion time increases. Here the max fitness 

means the inverse of the RMS error, i.e. if the max fitness 

increases, then the RMS error deceases.  

2) Probability of mutation effect on maximum fitness 

The probability of mutation is defined as the occurring 

possibility or the percentage of probability, and Fig. 11 shows 

the analysis results depending on changes of the probability 

of mutation. According to analysis results, it is found that if 

the probability of mutation increases, then the max fitness is 

improved. 

 

Fig. 11. Mutation effect 

 

V. CONCLUSION 

This work finds that both the linear GPA method and the 

non-linear method for the condition monitoring of the 

AE3007E turbofan engine have advantages and 

disadvantages, so the GPA methods are weak as the 

diagnostic method of the gas turbine engine.  

However the linear GPA has been used together with other 

diagnostic methods up to now, and this method can be used 

for the test purpose during development stage of the other 

diagnostic methods without noise and biases as well as the 

fundamental model of the non- linear GPA method.  

The non-linear GPA method shows much higher precision 

in the fault diagnostics than the linear GPA but needs more 

calculation time, and especially it is applicable for large 

degradation and multiple fault cases.  

However the weakness of the GPA methods occurs at 

consideration of sensor noise and biases. In case of small size 

of noise, the GPA methods can be used but it is not proper for 

the large size of noise. Another limitation of the use of the 

GPA methods is the consideration of biases. 

However the GA method has good diagnostic results on all 

the fault cases not only single and multiple fault cases but 

also consideration of sensor noise and biases.  

In addition if the population size, the probability of 

mutation and the probability of crossover increase, then the 

max fitness is improved but the conversion time increases. 
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