
  

 

Abstract—The interpretation of results in the case of a 

multi-objective optimization study is partially made with the 

help of the trade-off curves which indicate the set of solutions 

that gives the best compromise between objectives. However, 

there is a further need for choosing one single solution from this 

set. This article is discussing a decision making process for 

selecting the most beneficial design solution with respect to a set 

of proportion factors applied on the objectives and defined by 

the end-decision makers. The results show that better trade-offs 

may be obtained when solving the multi-objective problem 

using dedicated algorithms combined with the proposed 

selection method instead of reducing the problem to a 

single-objective definition by considering weight factors. 

 

Index Terms—Multi-objective optimization, Pareto set, 

negotiated design solutions.  

 

I. INTRODUCTION 

In the design process, the identification of the optimal 

solution meeting the set of requirements is of utmost 

importance. Although single-objective optimization 

problems are nowadays relatively simply solved through 

dedicated methods, challenges still exist when more 

conflicting objectives are considered. For example, one of the 

engineering tasks where optimization is successfully used is 

weight reduction, since it represents one important measure 

to take in order to improve the engineering systems’ 

performance. However, weight reduction usually implies the 

reduction of other performance criteria such as the stiffness 

and strength properties or the material cost. Therefore, there 

are cases where many objectives need to be defined and 

considered within the optimization procedure in which case a 

conflict situation appears between objectives; this is when an 

increased performance in one objective leads to a decreased 

performance for the others [1].  

Several complex techniques and algorithms have been 

proposed for solving such multi-objective optimization 

problems [2]-[5]. The weighted sum approach has been used 

as an attempt to simplify the problem complexity of finding 

solutions within multi-objective optimization problems, 

where all the objectives functions are summed into a single 

objective function, giving weight penalties for each of them 

[4]. Then, a solution may be obtained by running one of the 

many existing single-objective optimization algorithms. The 

main drawback regarding the weighted sum method is 
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represented by the quantification of weight penalties because 

the results are strongly dependent on them [6]. 

In order to obtain a large spectrum of solutions, dedicated 

multi-objective optimization algorithms are of interest [7]-[9]. 

One of the most spread algorithms within the current 

available commercial FE packages is the so-called MOGA 

(Multi-objective Optimization Genetic Algorithm). GRSM 

(Global Response Surface Method) algorithm is also used for 

solving multi-objective optimization problems recommended 

for large and time consuming models [10]. Instead of 

providing one single solution, the dedicated multi-objective 

optimization algorithms produce a set of solutions by 

searching within the design space for a set of Pareto optimal 

solutions [11]. The interpretation of results in the case of a 

multi-objective optimization study is partially made with the 

help of the trade-off curves, the so-called Pareto frontiers. 

The obtained Pareto frontiers only indicate the set of 

solutions that gives the best compromise between objectives, 

but there is a further need for choosing one single solution 

from the set. This can be done currently either by intuition or 

by reformulating the objectives as constraints, except one of 

them, or by using a composite objective function [1]. 

In order to deal with the difficulties of interpreting the 

multi-objective optimization results, this article is discussing 

a method in order to select the most beneficial design 

solutions with respect to a set of proportion factors applied on 

the objectives and defined by the end-decision makers, after 

running the optimization. 

 

II. METHOD 

 

𝑓1 =
𝑥2

200
. (1) 

 

𝑓2 =
100

 𝑥
. (2) 

 

𝑓3 = 20 𝑙𝑜𝑔 𝑥. (3) 

 

The above considered functions are graphically illustrated 

within Fig. 1. 
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The goal is to find the value of the design variable x that 

may offer the best trade-off solution between the conflicting 

objective functions in terms of proportion factors defined by 

In order to demonstrate the proposed method, let us 

suppose a simple multi-objective optimization problem 

where functions f1 and f2 are to be minimized, Eq. (1) and (2), 

and function f3 is to be maximized, Eq. (3). All these 

functions take values in terms of x∈[1,100] which represents 

the design variable.



  

decision makers. The resulted Pareto frontiers are shown 

within Fig. 2 and Fig. 3. The trade-off between two objectives 

may be realized between the points that define the Pareto 

optimal set, in terms of the objective importance. However, 

when it comes to multiple objectives, difficulties with using 

the Pareto front arise from the fact that the best compromise 

between two objectives does not necessarily represent the 

best one between other two objectives. Therefore, an overall 

performance of the objectives is needed, that relates the 

contribution of each objective when searching the most 

beneficial overall solution. 
 

 
Fig. 1. Considered functions within the defined multi-objective optimisation 

problem. 

 

 
Fig. 2. Pareto front–trade-off solutions between Obj. 1 and Obj. 2. 

 

 
Fig. 3. Pareto front–trade-off solutions between Obj. 1 and Obj. 3. 

 

 
Fig. 4. Overall performance functions and their corresponding minimum 

values. 

 

  

 

 

  

  

 

 

  

  

 

  

 

 

 

 

 

 

 

 

  

  

Fig. 4 shows the resulted overall performance functions P 

by considering 4 cases with different distributions of the 

proportion factors pi and pj, Table I, and an initial value of 45 

for x. The minimum value of the overall performance 

functions P gives the best compromise between the 

considered objectives while taking into account the desired 

value for the proportions pi and pj. 

The obtained values for the objective functions are 

graphically presented within Fig. 5 and Fig. 6. For the 

objectives to be minimized, improvements are observed if 

their normalized value is below 1, while a value above 1 

indicates improvements of the objectives to be maximized. 

Table I, correlated with Fig. 5 and Fig. 6, shows a selection of 

four possible solutions obtained by varying the proportion 

factors pi and pj in such a way to give different contributions 

of the objective functions to the obtained design solution. 

The plots shown, Fig. 5 and Fig. 6, are divided into four 

regions (I - IV) in order to clearly show and classify the 

performance offered by each of the design solutions. The 

performance is increased for both of the objectives if the 

solution comes from region I or it is decreased for both of the 

objectives if the solution comes from region IV. Region II 

and III contain those solutions where only one of the 

objectives has an increased performance. 

The solution denoted S1 shows a tied trade-off between 
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Such an overall performance function P is adapted here 

from [1], where proportion factors are applied to relate the 

contribution of the objectives, Eq. (4):

𝑃 =
 𝑝𝑖 × 𝜉𝑖
𝑛
𝑖=1 −  𝑝𝑗 × 𝜉𝑗

𝑚
𝑗=1

100
(4)

where:

pi and pj represents the proportions to which the value of 

the i
th

objective (to be minimized) and the value of the j
th

objective (to be maximized) contributes to the overall 

performance function P, in percent;

-  𝑝𝑖 +  𝑝𝑗 = 100%𝑚
𝑗=1

𝑛
𝑖=1 .

-

- 𝜉𝑖 =
 𝑂𝑖   −𝑂𝑖𝑚𝑖𝑛  

𝑂𝑖𝑚𝑎𝑥 −𝑂𝑖𝑚𝑖𝑛

, 𝜉𝑖 ∈  0,1 ; 𝜉𝑗 =
 𝑂𝑗    −𝑂𝑗 𝑚𝑖𝑛

 

𝑂𝑗 𝑚𝑎𝑥
−𝑂𝑗 𝑚𝑖𝑛

, 

𝜉𝑗 ∈  0,1 

𝑂𝑖
 =

𝑂𝑖

𝑂𝑖 𝑟𝑒𝑓

, represents the normalized value of the i
th

objective to the reference value, i=1, ..., n; 

𝑂𝑗 =
𝑂𝑗

𝑂𝑗 𝑟𝑒𝑓

, represents the normalized value of the j
th

objective to the reference value, j=1, ..., m;

The objective’s reference value is calculated by assuming 

an initial value for the design variable xinit: 𝑂𝑖 𝑟𝑒𝑓
= 𝑓𝑖(𝑥𝑖𝑛𝑖𝑡 ); 

𝑂𝑗 𝑟𝑒𝑓 = 𝑓𝑗 (𝑥𝑖𝑛𝑖𝑡 )

𝑂𝑖 = 𝑓𝑖(𝑥) ; 𝑂𝑗 = 𝑓𝑗 (𝑥);

𝑂𝑖𝑚𝑖𝑛
,𝑂𝑖𝑚𝑎𝑥

–minimum and maximum values of the 

objective to be minimized, i=1, ..., n;

𝑂𝑗 𝑚𝑖𝑛
,𝑂𝑗 𝑚𝑎𝑥

–minimum and maximum values of the 

objective to be minimized, j=1, ..., m;



  

  

 
 

 

 

 

 

 
  

 

 

    

 
 

    

         

         

         

         

     

     

 

  

 

 

 

 

 

 

 
 

 

 

 

 
 

 
 

 
 

 

  

 

 

 

  
 

International Journal of Materials, Mechanics and Manufacturing, Vol. 4, No. 3, August 2016

215

  

objectives, all having equal influence on the solution (33% 

each), Table I. S2 – S4 represent extreme dominated solutions: 

S2 represents Objective 3 dominated solution (p = 90%). S3 

represent Objective 2 dominated solution (p = 90%). S4 

represent Objective 1 dominated solution (p = 90%), Table I. 
 

 

 

 
Fig. 5. Obj. 1 vs. Obj. 2 - Selected solutions using the herein proposed 

method. 

 

 
Fig. 6. Obj. 1 vs. Obj. 3 - Selected solutions using the herein proposed 

method. 

 

TABLE I: RESPONSES’ VALUES AND THEIR CORRESPONDING PROPORTION FACTORS FOR DIFFERENT DESIGN SOLUTIONS 

Responses 

Solutions 

S1 S2 S3 S4 

 Obj. value p % Obj. value p % Obj. value p % Obj. value p % 

f1(x) 2.15 33 4.94 5 3.91 5 0.13 90 

f2(x) 0.83 33 0.67 5 0.71 90 1.7 5 

f3(x) 1.1 33 1.21 90 1.18 5 0.73 5 

Ps -19.31 -67.43 -1.43 -1.62 

x 66 100 89 16 

 

III. CASE STUDY 

The above presented method is applied further on within a 

simple case study. The problem consists in minimizing 3 

conflicting objectives related to a cantilever beam, Fig. 7: 

min: m - mass of the beam; min δz – deflection at the free-end 

when applying the force Fz; min φx – rotation at the free-end 

when applying the torque T. The optimization model was 

defined within Excel and it was solved using MOGA within 

the Hyperstudy®  facilities. 

The optimization results may be interpreted from Fig. 8 

and Fig. 9, correlated with Table II. The solution denoted S1 

represents a tied negotiation between the three considered 

objectives (the contribution of all the objective functions is 

33%). S2 represents rotation φx dominated solution (p = 90%). 

S3 represent displacement δz dominated solution (p = 90%). 

S4 represent the mass dominated solution (p = 90%). 

The same optimization model as previously described was 

further on solved by using the ARSM algorithm following the 

weighted sum approach. The results are represented by single 

values given to the model responses shown within Table III. 

By comparing Table III with Table II, it is concluded that 

better trade-offs may be obtained when solving the 

multi-objective problem using dedicated algorithms 

combined with the proposed selection method instead of 

reducing the problem to a single-objective definition by 

considering weight factors. 
 

 
Fig. 7. Bending of a cantilever beam (a) and Torsion of cantilever beam (b) – 

w and h are design variables, while δz, φx and the m (mass of the beam) 
represent the responses considered as objectives to be minimized. 
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TABLE II: RESPONSES’ VALUES AND THEIR CORRESPONDING PROPORTION FACTORS FOR DIFFERENT DESIGN SOLUTIONS OBTAINED BY USING THE 

PROPOSED SELECTION METHOD 

Responses 
Solutions 

S1 S2 S3 S4 

 Obj. value p % Obj. value p % Obj. value p % Obj. value p % 

mass [-] 1.07 33 1.49 5 1.48 5 0.91 90 

δz [-] 0.66 33 0.92 5 0.18 90 1.24 5 

φx [-] 1.16 33 0.22 90 1.17 5 1.15 5 

Ps [-] 5.52 1.21 1.58 10.44 

w [m] 0.045 0.087 0.038 0.049 

h [m] 0.059 0.043 0.098 0.047 

 
TABLE III: RESPONSES’ VALUES OBTAINED BY USING THE WEIGTHED SUM APPROACH 

Responses 
Solutions 

S1 S2 S3 S4 

 Obj. value weight Obj. value weight Obj. value weight Obj. value weight 

mass [-] 0.84 0.33 0.96 0.05 1.44 0.05 0.84 0.9 

δz [-] 1.64 0.33 1.32 0.05 0.19 0.9 1.64 0.05 

φx [-] 1.19 0.33 0.89 0.9 1.2 0.05 1.2 0.05 

w [m] 0.049 0.054 0.038 0.049 

h [m] 0.042 0.044 0.095 0.042 

 

 

 
Fig. 8. Obj.1 - mass vs. Obj.2 – δz; Selected solutions using the proposed 

method. 

 

 
Fig. 9. Obj.1 - mass vs. Obj.3 – φx; Selected solutions using the proposed 

method. 

IV. CONCLUSION 

The proposed selection method allows searching within 

Pareto optimal sets for the most beneficial solutions by 

following the importance allocated for each of the objectives, 

using the so-called proportion factors. The procedure is 

therefore following a multi-objective optimisation solved by 

using dedicated multi-objective algorithms such as MOGA or 

GRSM algorithms that generates Pareto optimal solutions. 

Compared to the weighted sum approach, the dedicated 

multi-objective algorithms combined with the proposed 

selection method will take longer time to reach the solution. 

However, the main advantage of using the proposed method 

comes from the fact that it allows exploring the full Pareto 

optimal design solutions which gives the complete trade-off 

information for the end-decision makers and possibly the 

chance to select a better compromise. 
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